
Software Testing Report

Methodology

During the development of the system, we employed various different testing methods in
order to ensure that the system would meet its requirements and so there would be as few
bugs as possible present. The testing approaches used were Unit Testing, White-box
Testing and Acceptance Testing. Owing to the Agile approach taken during development, all
testing was done incrementally.

The unit tests were implemented using JUnit. Using Java as the main body of our code,
JUnit was a clear choice for performing tests to ensure the program was behaving how the
programmers were expecting it to. They also allow quick tests to be run, without requiring
the front-end of the product to be complete, allowing the back-end to be developed correctly.
JUnit can also produce formal testing results, allowing the team to provide proof of their
product’s capabilities.

The white-box testing also came in the form of the programmers running the system
periodically after making small changes in order to ensure both that the changes had not
introduced any bugs and that the changes functioned as expected. This testing method was
appropriate as it caused the programmers to face any programming problems as soon as
they occurred, preventing any bugs to go unfound until later in the project development. This
testing approach would not be sufficient to inspect the program’s behaviour alone, but
combined with the JUnit tests, the program can be tested at both the front-end and the
back-end.

The acceptance testing came in the form of ensuring that the system fulfilled the fit criteria
associated with the core requirements of the system. The system was repeatedly compared
to these criteria in order to continually direct the development, and ensure the project’s
requirements were fulfilled.

Test Report

Unit Testing:

All of the unit testing results can be found in the URL found at the bottom of the report. As
you will see, it consists of multiple tables and these tables follow a certain format. Each table
corresponds to a different class being unit tested, and each row corresponds to a different
testing function. The columns of each table are “Test ID”, “Name of Test Function”,
“Function(s) tested”, “Function use”, “Result” and “Details”. The reason we chose to use this
selection is we felt that the tests should be as replicable as possible given the same source
code. Each test was given an ID to allow for easy referencing in literature, the test function is
named to identify what we used to perform the test, the functions being tested are named in
order to remove any ambiguity about what is being tested, the function use is stated to
inform anyone who is not familiar with the code what the function being tested should do, the

result is of course reported to show whether the test failed or passed and the details allows
us to go into more detail about how exactly the test function performs it’s testing.

In its current incarnation, the system passes all of the unit tests. The unit tests were
implemented using JUnit and were created and run in a white-box fashion, being created to
ensure that the code was producing the expected results. This initially proved to be difficult
as it was hard to run the libGDX code without needing the whole system to be running, but
this was eventually circumvented using Mockito to simulate the graphics functions.

The classes that were tested in this way were ImageActor, AnimatedActor, MovingActor,
Entity and NPC. With the exception of the functions in MovingActor, all of the functions that
are tested are done so individually. The reason for MovingActor’s tests being distinct in this
regard is that the only change that MovingActor makes to AnimatedActor is effectively
implementing acceleration, velocity and angular velocity and as these must work together to
update the actor’s positioning, it made sense they should be tested together.

White-box testing:
As stated earlier, this was done by the programmers after making small changes in order to
ensure that the code worked as intended without bugs. Whenever one of these tests failed, a
debugger would be run and then, once found, the erroneous code was modified and the test
rerun. Due to the rather informal nature of this testing, it is hard to provide any statistics.

This style of testing was of particular importance in the development of our system as our
system was developed using an Agile approach, and so favours the approach of making
small changes to then run small tests.

Black-box testing:

All of the black-box testing results can be found in the URL at the bottom of the report. The
test data is presented in a single table, in which each row corresponds to a different test.
The columns of the table are “Test ID”, “Test”, “Relevant Requirements”, “Expected Result”,
“Actual Result”, “Overall Result” and “Evidence”. The reason we chose to use this selection
is we felt that the tests should be as replicable as possible given the same source code.
Each test was given an ID to allow for referencing easily in literature, the test is given a
sentence long description that sums up what it involves, the test is then related to
requirements from the requirements document in order to state the necessity and the
relevance of the test, the expected result and actual result are then presented for
comparison, the overall result is then marked as a pass or a fail and finally we present our
evidence that the test was passed or an explanation for why it was not passed.

In total, there were 22 different black-box tests. Of these 22 tests, 18 passed and 4 failed.
The 4 that failed were BB_SafeGain, BB_MiniGain, BB_AvoidGain and BB_Mini. The reason
that BB_Mini and BB_MiniGain failed was due to the fact that the minigame has not yet been
added to the game as this is due to be done at a later stage. BB_AvoidGain has also failed
because of the thought that it should be fulfilled further down the line, but it is worth noting
that BB_SafeGain was expected to pass. It appears that the ability to gain points when

accessing a new safe area has encountered some sort of bug, which has lead to it not
working.

Acceptance Testing:

All of the acceptance testing results can be found in the URL at the bottom of the report. The
test data is presented in multiple tables, in which each table corresponds to one of the
classifications of requirements (Functional, Non-Functional or Constraint) and each row
corresponds to a different test. The columns of the table are “Test ID”, “Requirement ID”, “Fit
criterion”, “Result” and “Evidence”. We chose this format in order to make the tests as
unambiguous as we can make them. Each test was given an ID to allow for referencing
easily in literature, it is then given the ID for the requirement it is directly testing, the fit
criterion is then stated in order to save the reader having to look in the requirements
document to read the fit criterion and also to clearly state what the test was looking at, the
result is then given as either a pass, partial pass or fail and finally a statement of evidence is
given in the case of a pass or an explanation is given in the case of a fail or partial pass. Any
test given a partial pass is deemed to be a test in which the system has what the fit criterion
demands but simply not in the quantity that is demanded.

In its current incarnation, the system does not pass all of the 18 acceptance tests and in fact,
only accepts 9. The full list of tests that are not passed are: Acc_Points, Acc_Char,
Acc_Area, Acc_Mini, Acc_Boss, Acc_Powers, Acc_Enjoy, Acc_Play and Acc_FPS. Of these,
Acc_Char, Acc_Area and Acc_Powers are considered to be ‘Partial Passes’, as these failed
purely due to not quite reaching the numbers of characters, areas and powerups that they
respectively require. In addition to this, the only reason for Acc_Enjoy, Acc_Play and
Acc_FPS failing is due to the tests that they require not having been run yet.

The reason for the majority of these failures is due to the system still being under
development. While the system meets the requirements given at Assessment 2, it does not
meet the full range of requirements at this time.

Testing Material

The results of the testing can be found here:
https://github.com/mh1753/AbstractDelete/raw/master/Documentation/Assessment%202/Te
stingResults.pdf

https://github.com/mh1753/AbstractDelete/raw/master/Documentation/Assessment%202/TestingResults.pdf
https://github.com/mh1753/AbstractDelete/raw/master/Documentation/Assessment%202/TestingResults.pdf

